6. はめあい と すきま Fits and internal clearances

6.1 はめあい

軸受を機器に組み込むはめあい条件は、機器の性能を 十分に発揮させる上で極めて重要な事項である。

小径・ミニチュア玉軸受は、通常、軽荷重で用いられる ので、小さいしめしろからわずかなすきまばめの範囲の はめあいを採る。

また、取付けの簡略化、取付け時に発生しやすい異常 の防止、はめあいによって生じる接触角・予圧量の変化の 予防などからすきまばめを選択することがある。すきま ばめを選択した場合、ナットなどで内輪を軸の肩に締め 付けることにより、クリープの発生を容易に防ぐことがで きる。

ばねを用いて軸受に予圧を与えるときには、予圧を支え る側の軌道輪のはめあいをすきまばめとし、軸方向に円 滑に動くようにすることがよい。

機器の軽量化のために軽合金を用いる場合、温度上昇 のために外輪はめあい面のすきまが増大し、ひいては機 器の性能の低下や軸受の早期損傷を生じることになるの で、鋼製のブッシュを用いるとよい。

最も一般的なはめあいの例を、表6.1及び表6.2に示 す。特別な使用条件の場合には、ISCにご相談ください。 なお、軸及びハウジング穴の寸法許容差については表 6.3及び表6.4による。

表 6.1 内輪と軸との はめあい Table 6.1 Inner ring fit with shaft

使用条件 Condition			適用例 Application	軸受の精度等級 Bearing tolerance class	はめあい条件 Fit	軸の寸法許容差 Shaft finish(μm)	望ましい平均はめあい (*1) Suggested average fit (*1)
	低速 Low speed		シンクロ Synchros サーボ Servos ポテンショメータ Potentiometers レゾルバ Resolvers ジャイロジンバル Gyro gimbals	5級 CLASS 5 4級 CLASS 4 CLASS 5P CLASS 7P	わずかな すきまぱめ Slightly loose fit (slip fit)	φd -2 -7	2L
	低速~中速 Low and medium speeds		小型モータ Small motors ファンモータ Fans 汎用サーボ Servos	0級 Normal 6級 CLASS 6 ABEC 1 ABEC 3	中間ばめ Transition fit	φ <i>d</i> h5	±0
内輪回転 Inner ring rotation	中速~高速 Medium and high speeds	Nedium and	磁気ディスクスピンドル Computer disk spindles	5級 CLASS 5 4級 CLASS 4 CLASS 5P CLASS 7P	わずかな すきまばめ (*2) Slightly loose fit (*2)	φd -5 -8	4L
			VTR ドラムシリンダ Video cassette recorder drum spindles		選択はめあい Close-sliding fit	φd -1 -6	1L
			ジャイロロータ Gyro rotors 歯科用スピンドル Dental Spindles 高周波スピンドル High-frequency spindles	4級 CLASS 4 CLASS 7P CLASS 9P	わずかな しまりばめ Slight interference fit (Push fit)	φd ±2.5	2Т
			電気掃除機 Vacuum cleaners 電動工具 Electric tools	0級 Normal ABEC 1	しまりばめ interference fit	φd js5	4T
			ポリゴンミラースキャナモータ Polygonal mirror scanner motors	5級 CLASS 5	選択はめあい Close-sliding fit	φd -1 -6	1L
			ジャイロロータ Gyro rotors	4級 CLASS 4 CLASS 5P CLASS 7P	すきまばめ Loose fit	φd -5 -10	5L
外輪回転	低速~高速 Low to high speeds	内輪側面の クランブなし Inner ring axially free	クラッチ Clutches 小型ファンモータ Small fans	0級 Normal 6級 CLASS 6 ABEC 1 ABEC 3	わずかな すきまばめ Slightly loose fit	φd g5	3L
Outer ring rotation		high speeds 内輪側面の クランブを Inner ring	内輪側面の クランブあり Inner ring axially fixed	テープガイドローラ Tape guide rolls ピンチローラ Pinch rolls	5級 CLASS 5 4級 CLASS 4 CLASS 5P CLASS 7P	すきまばめ Loose fit	φd -5 -10

(*1) L: すきまぱめ、T: しまりぱめ L:Loose fit, T:Interference fit (*2) はめあい後、接着する場合が多い。 After mounting, usually bonded

Shaft and housing fits

The fitting practice used for bearings is extremely important in achieving their expected performance. Since miniature bearings are usually used under light loads, the range between a push fit (light interference) and a slip fit (slightly loose) is generally used.

In the case of a rotating inner ring, ordinary ball bearings are fitted to the shaft with interference, however, a slip fit is generally used for miniature bearings and instrument ball bearings in order to simplify their mounting, prevent damage during mounting and avoid changing the contact angle or preload. This is because the occurrence of creep in miniature bearings is easily prevented by tightening the side face of the inner ring against a shoulder on the shaft with a nut.

When a spring is used to apply a preload to a bearing, the fitting of the bearing ring in contact with the spring should be loosely fitted so the ring slides smoothly. When housings are built of lightweight alloys, the fitting clearance of the outer ring will increase with increasing temperature and possibly impair the machine's operation and reduce the bearing life; therefore, the bearings should be mounted in a steel bushing. **Tables 6.1** and **6.2** show the recommended fittings for various design conditions and applications. Tables 6.3 and 6.4 show the dimension tolerance for bearing and housing shaft hole.

表 6.2 外輪とハウジング穴との はめあい Table 6.2 Outer ring fit with housing

使用条件 Condition		適用例 Application	軸受の精度等級 Bearing tolerance class	はめあい条件 Fit	ハウジング穴の寸法許容差 Shaft finish (μm)	望ましい平均はめあい (*1) Suggested average fit (*1)
	低速 Low speed	シンクロ Synchros サーボ Servos ポテンショメータ Potentiometers レゾル/ Resolvers ジャイロジンパル Gyro gimbals	5級 CLASS 5 4級 CLASS 4 CLASS 5P CLASS 7P	わずかな すきまばめ Slightly loose fit (slip fit)	φD +3 -2	2L
内輪回転 Inner ring rotation	中速~高速 Medium and high speeds	小型モータ Small motors 電動工具 Electric tools 電気掃除機 Vacuum cleaners ファンモータ Fans	0級 Normal ABEC 1	すきまばめ Loose fit	ϕD H6	9L
		磁気ディスクスピンドル Computer disk spindles	5級 CLASS 5 4級 CLASS 4	すきまばめ(*2) Loose fit(*2)	φD +3 0	4L
		VTR ドラムシリンダ Video cassette recorder drum spindles	CLASS 5P CLASS 7P	わずかな しまりばめ Slightly interference fit	φD -2 -5	2Т
		ジャイロロータ Gyro rotors 高周波スピンドル High-frequency spindles	5級 CLASS 5 4級 CLASS 4 CLASS 5P	すきまばめ Loose fit	φD +5 0	5L
		ポリゴンミラースキャナモータ Polygonal mirror scanner motors	CLASS 7P	すきまばめ (*2) Loose fit (*2)	φD +3 0	4L
外輪回転 Outer ring rotation		テープガイドローラ Tape guide rolls ピンチローラ Pinch rolls	5級 CLASS 5 4級 CLASS 4 CLASS 5P CLASS 7P	わずかな すきまばめ Slightly loose fit	φD +3 -2	2L
	低速~高速 Low to high speeds	カムローラ Cam followers テンションプーリ Tension pulleys アイドルギヤ Idler gears	0級 Normal 6級 CLASS 6 ABEC 1 ABEC 3	しまりばめ Interference fit	ϕD M5	5T

^(*1) L:すきまぱめ、T:しまりぱめ L:Loose fit, T:Interference fit (*2) はめあい後、接着する場合が多い。 After mounting, usually bonded

表 6.3 軸径の寸法許容差

Table 6.3 Tolerances for shaft diameters

単位: μ m Units: μ m 軸径 (mm) 公差域クラス Shaft dia Tolerance class for shafts を招え 以下 g4 g5 h4 h5 js4 js5 incl over 3 **-2** ∼ **-6** ~ -3 ~ -4 ±1.5 ±2.0 ~ -8 *-*4 ∼ *-*9 ~ -4 3 6 -4 $0 \sim -5$ ± 2.0 ±2.5 10 **-5** ∼ **-11** ±3.0 6 **-5** ∼ **-9** $0 \sim -4$ $0 \sim -6$ ± 2.0 10 18 -6 ∼ -11 -6 ∼ -14 $0 \sim -5$ 0 ~ -8 ±2.5 ±4.0

表 6.4 ハウジング穴の寸法許容差

Table 6.4 Tolerances for housing bores

ハウジング穴径(mm) 公差域クラス Bore dia Tolerance class for shafts を超え 以下 H5 H6 JS5 JS₆ K5 K6 M5 M6 incl over 3 +4 ~ 0 +6 ~ 0 +20 Ω ~ -4 $0 \sim -6$ *-*2 ∼ *-*6 **-2** ∼ **-8** +30 3 6 +5 0 $+8 \sim 0$ Ω ~ -5 +2 ~ −6 -3 ~ -8 ~ -9 ± 2.5 +40 -1 10 +6 ~ +9 ~ 0 ±3.0 +2 ~ -7 -4 ∼ -10 -3 ∼ -12 6 0 ± 4.5 +1 ~ -5 10 18 +8 0 +11 ~ 0 ± 4.0 ±5.5 +2 ~ -6 +2 ~ **-**9 -4 ∼ -12 -4 ∼ -15 +2 ~ -11 18 30 +9 ~ 0 +13 ~ ±4.5 +65 -8 **-5** ∼ **-14** -4 ∼ -17

軸やハウジングの精度不良がある場合、軸受はそ の影響を受け、必要な性能を発揮することができ ない。例えば、取付部の肩の精度不良があれば、軸 受の内輪・外輪に傾きが生じ、軸受荷重のほかに端 部集中荷重(エッジロード)が加わり、保持器の破 損などの損傷を生じる原因となることがある。

一般の使用条件では、はめあい面の加工は、旋削 の上仕上げでよいが、回転の振れや音響についての 要求が厳しい場合には、研削仕上げが必要である。

軸受を使用する機器の軸及びハウジング穴の精 度の目安を、表6.5に示す。

If the accuracy of a shaft or housing does not meet the specification, the performance of the bearings will be affected and they will not perform to their full capability. For example, inaccuracy in the squareness of the shaft shoulder may cause misalignment of the bearing inner and outer rings, which may reduce the bearing fatigue life by adding an edge load in addition to the normal load. Cage fracture and seizure sometimes occur for this same

For normal operating conditions, a turned finish or smooth bored finish is sufficient for the flitting surface; however, a ground finish is necessary for applications where vibration and noise must be low. The accuracy and surface finish of shafts and housings for normal operating conditions are listed in Table 6.5.

表 6.5 軸・ハウジング穴の精度と粗さ

Table 6.5 Accuracy and roughness of shaft and housing

単位:μm Units:μm

項目 Item	軸受等級 Class of bearings	軸 Shaft	ハウジング穴 Housing bore	
真円度公差 Tolerance for out-of-roundness	0級、6級 Normal, CLASS 6 5級、4級 CLASS 5, CLASS 4	$\frac{ T3 }{2} \sim \frac{ T4 }{2}$ $\frac{ T2 }{2} \sim \frac{ T3 }{2}$	$\frac{ T4 }{2} \sim \frac{ T5 }{2}$ $\frac{ T2 }{2} \sim \frac{ T3 }{2}$	
円筒度公差 Tolerance for cylindricality	0級、6級 Normal, CLASS 6 5級、4級 CLASS 5, CLASS 4	$\frac{ T3 }{2} \sim \frac{ T4 }{2}$ $\frac{ T2 }{2} \sim \frac{ T3 }{2}$	$\frac{ T4 }{2} \sim \frac{ T5 }{2}$ $\frac{ T2 }{2} \sim \frac{ T3 }{2}$	
肩の振れ公差 Tolerance for shoulder runout	0級、6級 Normal, CLASS 6 5級、4級 CLASS 5, CLASS 4	IT3 IT3	IT3 ∼ IT4 IT3	
はめあい面の粗さ Roughness of fitting surfaces Ra		0.8	1.6	

Web Action No.

**P径法による一般的な推奨であり、軸受の精度に対応して基本公差 IT の等級を選定する。

This table is for general recommendation using the radius measuring method. The basic tolerance (IT) class should be selected in accordance with the bearing precision class.

6.2 軸受の内部すきま

Bearing internal clearances

軸受の運転中における内部すきまの大小は、疲れ 寿命、振動、騒音、発熱など軸受の性能に大きく影 響する。したがって、はめあい、軸受荷重、回転速度 及び運転中の軸受温度などを考慮して、適切なラジ アル内部すきまを選定する必要がある。

ISCでは、6段階の内部すきまを定めており、その 値は表6.6に示すとおりである。

なお、測定されたすきまの値は、測定荷重による 弾性変形量(接近量)分だけ、理論内部すきま値(幾 何すきま)より大きくなるので、補正が必要である。 (表6.6備考2参照)

The internal clearance of ball bearings greatly influences their performance, including fatigue life, vibration, noise, heat generation, etc. Consequently, it is necessary to select the proper clearance considering the bearing fit, load, speed and operating temperature. ISC provides clearances in six steps as shown in **Table 6.6**. To obtain accurate measurements, the clearance is generally measured by applying a specified measuring load on the bearing. As a result, the measured clearance is always slightly larger than the theoretical internal clearance by the amount of elastic deformation caused by the measuring load. The theoretical internal clearance may thus be obtained by correcting the measured clearance by the amount of elastic deformation (refer to **Table 6.6** Remark #2)

単位: μm

表 6.6 小径玉軸受・ミニチュア玉軸受のラジアル内部すきま

Table 6.6 Radial internal clearances in extra small and miniature ball bearings.

						Units . μ m
すきま記号 Clearance symbol	MC1	MC2	MC3	MC4	MC5	MC6
すきま Clearance	最小 最大 min max					
Clearance	0 5	3 8	5 10	8 13	13 20	20 28
すきま記号 Clearance symbol	MC1	MC2	MC3	MC4	MC5	MC6
すきまの補正量 Clearance correction	1	1	1	1	2	2

- 1. 標準的な内部すきまは MC3 である。 The standard clearance is MC3. 2. 測定すきまとして用いる場合、次表の補
- 正量を加える。 To obtain the measured value, add the correction amount in the table below.
- なお、測定荷重は、次のとおりである。 ミニチュア玉軸受の場合: 2.5N {0.25kgf} 小径玉軸受の場合: 4.4N {0.45kgf} The measuring loads are as follo For miniature ball bearings 2.5N {0.25kgf} For extra small ball bearings 4.4N 10.45kgfl

内部すきまの選定基準を参考として、表6.7に示す。 特別な内部すきまを選定する場合には、ISCにご相談 ください。

Table 6.7 shows the criteria for selecting the radial clearance for extra small and miniature ball bearings.

For reference purpose, selection criteria of radial clearance is shown in **Table 6.7**. Please consult with ISC for special radial clearance.

表 6.7 ラジアル内部すきまの選定基準例

Table 6.7 Selection of radial clearances

用途 Typical application	軸受に対する条件 Requirement	すきま記号 Clearances symbol	備考 Remarks
精密歯車軸、サーボメカニズム、 ステッピングモータ、 低速で使用される機器 Shafts for precision gear, servo-mechanisms, stepping motors, other low-speed applications	● 予圧を与えずに軸受すきまを小さくしたい。 Small bearing clearance is required with no preload. ● アキシアル荷重が小さい。 Low axial load. ● アキシアル方向剛性を必要としない。 High axial rigidity is not required.	MC1 MC2	● しめしろをつけない。 Avoid interference fits.
シンクロ、ラジアル荷重を受けるジャイロジンパル、 VTRドラムスピンドル、磁気ディスクスピンドル、 ポリゴンミラースキャナモータ、 中〜低速回転で使用される機器 Synchros, gyro gimbal radial bearings, Video cassette recorder drum spindles, computer disk spindles, polygonal mirror scanner motors, other low or medium-speed applications	 摩擦トルクを小さくしたい。 Low frictional torque is required. アキシアル荷重は普通。 Axial load and rigidity are normal. アキシアル方向剛性は普通でよい。 High axial rigidity could be normal. 	MC3 MC4	● 原則として、しめしろをつけない。 Avoid interference fits in most applications.
ジャイロロータ、アキシアル荷重を受けるジャイロジンバル、ファンモータ、電気掃除機、高速または高温で使用される機器 Gyro rotors, gyro gimbal thrust bearings, fan motors, vacuum cleaners, other high-speed and high-temperature applications	 摩擦トルクを特に小さくしたい。 Extremely low frictional torque is required. アキシアル荷重が大きい。 High endurance and high axial rigidity are required. アキシアル方向剛性を必要とする。 High axial rigidity is required. 	MC5 MC6	 軸方向すきまの調整を行うか、ばねで予圧する。 Either axial clearance is made adjustable or spring preload is used. しめしろをつけてもよい。 Interference fit may be allowed.